Live-cell protein labelling with nanometre precision by cell squeezing
نویسندگان
چکیده
Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼ 1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy.
منابع مشابه
Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response
Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by e...
متن کاملIn vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additi...
متن کاملGenetic tags for labelling live cells: gap junctions and beyond.
The availability of green fluorescent protein (GFP) as a tracer for observing proteins in living cells has revolutionized cell biology and spurred an intensive search for GFP variants with novel characteristics, additional autofluorescent proteins and alternative techniques of protein labelling. Two recent studies - one on tagging with tetracysteine motifs and labelling with biarsenic fluoropho...
متن کاملOptimization of Single Cell Protein Production by Aspergillus niger Using Taguchi Approach
: World population has been continuously raised and therefore due to this fact new source of foods, particularly proteins, are in demand. In recent years, single cell protein has been considered as an accepted substitute for animal and plant proteins. In this study, single cell protein production was studied in a batch submerged culture using Aspergillus niger PTCC5012. Experimental design was ...
متن کاملP-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli
Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...
متن کامل